

PEER International Pacific Rim Forum June 16-17, 2021

Significance and validation of the inter-period correlation of simulations

Jeff Bayless, Norm Abrahamson

AECOM, UCB

June 17, 2021

The purpose of this presentation is to...

• illustrate that the inter-period correlation of ground-motions (ρ_{ϵ}) is a critical feature that influences variability of structural response.

Therefore, it should be considered as a validation parameter in physics-based earthquake simulations.

Provide example validations and calibrations.

Introduction

Physics-based earthquake ground-motion simulations:

In practice, simulations will be used by engineers increasingly in the next decades. To use them, we need to **validate** that they contain the ground-motion properties found in recordings.

Epsilon (ϵ) is the number of standard deviations difference between the observed GM and the median model prediction (In units)

 ε is a "normalized residual"

 ϵ is **correlated** between spectral periods

PEER

5

For an entire database:

 $F_1 = 0.2 \text{ Hz}, F_2 = 5 \text{ Hz}$ $\rho = 0.14$

 $\rho = 0.74$

0

ϵ(0.22 Hz)

2

4

0 0

Repeat this calculation of ρ for each period (or frequency) pair of interest.

Why does the **inter-period correlation of** ϵ (ρ_{ϵ}) matter?

Significance

- ϵ itself is an indicator of the local peaks and troughs at a given frequency in a spectrum
- ρ_{ϵ} quantifies the relationship of ϵ values between periods
- therefore ρ_{ϵ} characterizes the relative width of these extrema.

PEER

Example Fourier Amplitude Spectra (FAS): As a measure of the width of spectral peaks, ρ_{ϵ} is relevant in dynamic structural response

Bayless and Abrahamson (2018):

- Structures are sensitive to a range of frequencies about the fundamental one, especially for nonlinear response
- Breadth of spectral peaks influences variability of the response
- Increased ρ_{ϵ} leads to flatter fragility curves
- Therefore, it influences seismic risk and is an important metric for validation of simulations

Models for ρ_{ϵ} - response spectra*

*within-event residual models

Models for ρ_{ϵ} - Fourier amplitude spectra

- Stafford (2017)
- At left, Bayless and Abrahamson (2018)

(a) between-event(b) between-site(c) within-site(d) total

Evaluation of simulations for ρ_{ϵ}

Study #1: SCEC Broadband Platform Simulations Study #2: SCEC Cybershake Simulations

Study #1: SCEC Broadband Platform

- Five simulations methods
- These use 1-D (plane-layered) earth models with no site effects on the SCEC BBP.
- Simulations of 9 crustal earthquakes, each with 50 alternate source realizations
- A sixth (Rodgers et al. 2018) not from the BBP but was evaluated at the same time.
 M7.0 Hayward fault scenario, with 3-D earth model, f<5 Hz, one realization

Evaluation Procedure

- Calculate residuals from the simulations relative to the FAS model
- Partition the residuals into components: mean bias, between-event, between-site, within-site
- Calculate ρ_{ϵ} for each FAS residual component and the total ρ_{ϵ}

Study #1: SCEC Broadband Platform

Study #1: SCEC Broadband Platform

Conclusions from Bayless and Abrahamson (2018)

- None of the six finite-fault simulation methods tested adequately capture ρ_ϵ over the entire frequency range evaluated
- Several show promise, especially at low frequencies.
- changes to the rupture generator may be the most promising approach to modifying the long period ρ_ϵ
- Using the correlation of the FAS provides the developers of the simulation methods better feedback in terms of how they can modify their methods that is not clear when using response spectra
- More calibration is required

Study #2: SCEC Cybershake

Evaluation Procedure

- The same as for the BBP simulations with the additional advantages:
 - Much wider range of Mw, paths, rupture distances, site conditions, etc better mimics NGA-W2
 - 3D crustal model

Conclusions

- the 0.1 < f < 0.5 Hz CyberShake 15.4 simulations have a satisfactory level of total inter-frequency correlation
- The between-site component could be improved
 - this may be due to the relative simplicity of the seismic velocity model in the GTL, or to the effects of low frequency basin waves mapped into the site terms

Calibration of simulations for ρ_{ϵ}

Wang et al (2019): Applied a post-processing method to SDSU simulations

Calibration of simulations for ρ_{ϵ}

Song et al. (2020): investigate the effect of pseudodynamic source models on the correlation using the SCEC BBP with the Song et al. (2014) source model approach

- The cross-correlation in source parameters (slip, rupture velocity, and peak slip velocity) improves the between-event ground-motion correlation around 0.5 Hz (red and blue)
- Minimal effect at other frequencies

Dashed: empirical Magenta: correlated source parameters Cyan: uncorrelated source parameters

Summary

Importance of ρ_ϵ as a validation parameter

- Low FAS ρ_{ϵ} in simulations under-estimates the variability in structural response.
- This leads to structural fragilities which are too steep (under-estimated dispersion parameter β) and to non-conservative estimates of seismic risk.

Evaluation of Simulations

- SCEC BBP: None of the methods evaluated are adequate for the full frequency range evaluated; some are acceptable at low frequencies.
- SCEC Cybershake: adequate total ρ_{ϵ} between 0.1-0.5 Hz. Between-site component could be improved

Calibration of Simulations

- Can incorporate the observed ρ_{ϵ} into simulations by post-processing (e.g. Wang et al, 2019)
- Ongoing; needs more work to get a solution which does not ignore the physical process
 - e.g. correlation of source parameters (Song et al. 2020)
 - Others?

Thank you

Jeff Bayless jeff.bayless@aecom.com

